Mark schemes

Q1.

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.	
Level 3	All stages are covered and the explanation of each stage is generally correct and virtually complete. 5-6 Marks
Answer is well structured with no repetition or irrelevant points. Accurate and clear expression of ideas with no errors in use of technical terms.	
Level 2	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.
3-4	Answer shows some attempt at structure. Ideas are Marks expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points. Some minor errors in use of technical terms.
Level 1	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete.
1-2 Answer includes isolated statements but these are not presented in a logical order or show some confusion.	
Answer may contain valid points which are not clearly linked to an argument structure. Errors in the use of technical terms.	
Level 0	Insufficient correct chemistry to gain a mark.

Indicative chemistry content

Stage 1: Temperature

1a. The reaction is endothermic (so equilibrium shifts to RHS to reduce the temperature)
1b. So, higher temperature increases the yield 1c. High temperatures are costly (so compromise temperature used)

Stage 2: Pressure

2a. More moles of gas on the right hand side, (so equilibrium shifts to RHS to increase the yield)
2b. So, lower pressure increases the yield

2c. A low pressure means a low cost

Stage 3: Catalyst

3a. Catalyst has no effect on yield
3b. Adding a catalyst allows a lower temperature to be used
3c. So, this lowers the cost

Q2.
C
The rate of the reverse reaction increases.

Q3.
(a) M1 decreases yield

M2 So equilibrium shifts to side with more moles/molecules or more moles/molecules on LHS

Allow M2 independent of M1

M3 So equilibrium shifts (to left side) to oppose decrease in pressure OR to increase pressure

Must refer to equilibrium shifting to gain maximum marks
(b) M 1 amount $\mathrm{SO}_{2}(=0.46-0.18)=0.28 \mathrm{~mol}$

M 2 amount $\mathrm{O}_{2}(=0.25-0.09)=0.16 \mathrm{~mol}$

M3 total amount $(=0.28+0.16+0.18)=\underline{0.62} \mathrm{~mol}$

M4 partial pressure of $\mathrm{SO}_{2}=0.62 \times 215=97(.1)(\mathrm{kPa})$
$\mathrm{M} 4=\frac{M 1}{M 3} \times 215$
(c) $\mathrm{M} 1 K_{\mathrm{p}}=\frac{\left(\mathrm{pp} \mathrm{SO}_{3}\right)^{2}}{\left(\mathrm{pp} \mathrm{SO}_{2}\right)^{2} \times \mathrm{pp} \mathrm{O}_{2}}$

Penalise square brackets in M1
$\mathrm{M} 2=1.2(0) \times 10^{-2}$
$\mathrm{M} 3=\mathrm{kPa}^{-1}$
(d) Stays the same

Q4.
(a) Amount Diester $=1-\frac{x}{2}$

Amount Water $=1-\mathrm{x}$

Amount Diol $=\frac{x}{2}$
(b)

Allow other versions of the structure (abbreviated or displayed)
(c)

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}}= & \frac{0.452^{2} \times 0.273}{0.971 \times\left(\text { amount } \mathrm{H}_{2} \mathrm{O}\right)^{2}} \text { or } \frac{\left[\text { acid] }{ }^{2} \times[\text { diol }]\right.}{[\text { diester }] \times\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}} \\
& \left(\text { Amount } \mathrm{H}_{2} \mathrm{O}\right)^{2}
\end{aligned}=\frac{0.452^{2} \times 0.273}{0.161 \times 0.971} \text { or } \frac{\left[\text { acid }{ }^{2} \times[\text { diol }]\right.}{[\text { diester }] \times \mathrm{K}_{\mathrm{c}}}=(0.357) ~ \$
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\frac{0.452^{2} \times 0.273}{0.971 \times\left(\text { amount } \mathrm{H}_{2} \mathrm{O}\right)^{2}} \text { or } \\
& \left(\text { Amount } \mathrm{H}_{2} \mathrm{O}\right)^{2}=\frac{0.45}{0.16} \\
& \mathrm{~K}_{\mathrm{c}}= \\
& \frac{\left(\frac{0.452}{¥}\right)^{2} \times\left(\frac{0.273}{¥}\right)}{\left(\frac{0.971}{\Psi}\right)\left(\frac{\text { amount } \mathrm{H} 2 \mathrm{O}}{¥}\right)^{2}}
\end{aligned}
$$

Amount $\mathrm{H}_{2} \mathrm{O}=\sqrt{ } 0.357=0.597 \mathrm{~mol}$

Q5.
A
The concentrations of the reactants and products are equal.

Q6.
(a) M1 $\frac{\left[\mathrm{CO}^{2}\left[\mathrm{H}_{2}\right]^{4}\right.}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$

M2 $\mathrm{mol}^{4} \mathrm{dm}^{-12}$
M2 allow for units that are consequential on M1
(b) M1 clear attempt made to divide moles by volume to find concentrations
7.66×10^{-3} scores M1,2,3
7.66×10^{-15} scores M1,3
M1 can use 0.750 or 750 (or $75,7.5,0.075,0.0075$, etc)

$$
\begin{aligned}
& \frac{\left[\frac{0.110}{0.750}\right]^{2}\left[\frac{0.220}{0.750}\right]^{4}}{\left[\frac{0.075}{0.750}\right]\left[\frac{0.156}{0.750}\right]} \\
& \quad \frac{(0.147)^{2}(0.293)^{4}}{(0.100)(0.208)} \text { or } \frac{(0.0215)(0.00740)}{(0.100)(0.208)}
\end{aligned}
$$

for M2 volume used must be 0.750 or 750 (if use V at this stage, then must be one of these values of V used later on)

M3 7.66×10^{-3}
M3 ignore units
If moles are used in place of concentration
penalise M1, but M2 and M3 could score for ECF

$$
\frac{(0.110)^{2}(0.220)^{4}}{(0.075)(0.156)} \quad \text { M3 } 2.42 \times 10^{-3}
$$

Allow ECF if incorrect expression for K_{c} is used
(c) M1 yield would decrease
mark each point independently

M2 equilibrium (position) moves left / shifts left / in direction of reverse reaction
to oppose increase in pressure / to reduce pressure
M2 need both parts; ignore favours reverse reaction for the first part

M3 fewer moles/molecules of gas on left hand side / fewer moles/molecules of gaseous reactants

M3 2 moles/molecules (of gas) on left hand side $v 6$ moles/molecules (of gas) on right hand side

M4 no effect on K_{c}

Q7.
(a)

X must be on or just below line of x axis
(b) M1 Equilibrium $\mathrm{n}\left(\mathrm{H}_{2}\right)=\underline{0.24}$

M2 Total number of moles $=\underline{0.47}$

M3 Mole fraction of $\mathrm{H}_{2}=0.51$ (1) or 0.47
M3 Allow mole fraction of $\mathrm{H}_{2}=\frac{\mathrm{M} 1}{\mathrm{M} 2}$

M4 Partial pressure of hydrogen $=5310$ or $5.31 \times 10^{3} \mathrm{kPa}$

M4 Allow Partial pressure of hydrogen $=$ M3 $\times 1.04$ | $\times 10^{4}$ |
| :--- |

(c) $\mathbf{M 1} \quad K_{\mathrm{p}}=\frac{\mathrm{ppCH}_{3} \mathrm{OH}}{\mathrm{ppH}_{2}^{2} \times \mathrm{ppCO}} \quad \mathrm{OR} \frac{\mathrm{pCH}_{3} \mathrm{OH}}{\mathrm{pH}_{2}^{2} \times \mathrm{pCO}}$

Do not allow square brackets
Pa^{-2} or kPa^{-2}
Allow any pressure to power of ${ }^{-2}$
(d) M1 Increases

M2 No effect
(e) M1 No effect

1
M2 Increases rate of forward and backward reaction equally/by the same amount $O R$ catalyst does not affect position of equilibrium

M2 Allow Catalyst does not appear in the K_{p} expression
M2 Allow Only temperature affects Kp
Ignore Catalysts increase the rate of reaction or rate at which equilibrium is reached 1

Q8.
(a) Amount of Nitrogen monoxide $=1.15 \mathrm{~mol}$

Answers to min 2sf
1
Amount of Chlorine $=0.825 \mathrm{~mol}$
(b)
$K_{c}=\frac{\left[\mathrm{NOCl}^{2}\right.}{\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}$
1
(c)
$1.32 \times 10^{-2}=\frac{[\mathrm{NOCl}]^{2}}{[0.85 / 0.800]^{2}[0.458 / 0.800]}$
M1 = divides mole quantities by 0.800
1
$\left[\mathrm{NOCl}^{2}=8.53 \times 10^{-3} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\right.$
M2 $=$ evaluates $[\mathrm{NOCI}]^{2}$
$[\mathrm{NOCl}]=0.0924 \mathrm{~mol} \mathrm{dm}^{-3}$
$M 3=\sqrt{ } M 2$
$\mathrm{n}(\mathrm{NOCl})=0.0924 \times 0.800=0.0739 \mathrm{~mol}$
M4 $=$ M3 $\times 0.800$ (allow ecf on an incorrect volume used in M1)
(answer to 2sf or more)

If no division in M1 then max 3
M2 $=4.37 \times 10^{-3}$
$M 3=0.0661 \mathrm{~mol} \mathrm{dm}^{-3}$
M4 $=0.0529 \mathrm{~mol}$

> If Kc upside down then can still score 4
> $M 1=$ divides mole quantities by 0.800
> $M 2=48.96$
> $M 3=7.00 \mathrm{~mol} \mathrm{dm}$
> $M 4=0.600 \mathrm{~mol}$
> Incorrect rearrangement loses M 2

Q9.
A
1.5

Q10.
A

Q11.

(a) 3 minutes

M2 dependent on M1 or near miss
(At equilibrium, rate twd $=$ rate back so) concentrations (of O_{2} and SO_{3}) remain constant

Not concentrations are the same/equal
Allow (after this point) gradient is zero / curve flattens out
(b) Sketch begins at origin and goes up until 3 mins

Levels off at $0.3 \mathrm{~mol} \mathrm{dm}^{-3}$
Mark Independently
(c) T_{2} (Not worth a mark alone)
$T_{1}, C E=0$
Equilibrium has moved / shifted to RHS/forward in endothermic direction
Both RHS / forward and endothermic needed

Equilibrium has opposed the increase in T / Equilibrium moves to decrease the T

Not just to oppose the change

Q12.

(a) M1 no effect (on yield)
$C E=0$ if yield changes

M2 increases rate / speed of both / forward and reverse reactions equally / by the same amount

If no reference to effect on yield, could still score M2
Ignore reference to no change in position of equilibrium, and reference to lowering activation energies
M2 allow changes rate of both / forward and reverse reactions equally / by the same amount
(b)
$\left(K_{c}=\right) \frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}}$
Must be square brackets
Ignore state symbols
Ignore units
(c) M1 divides moles by volume (0.250 or $\frac{250}{1000}$)

M2

$$
K_{c}=\frac{\frac{0.0610}{0.250}}{\left[\left[\frac{.040}{0.250}\right]\left[\frac{0.199}{0.250}\right]^{2}\right.}\left(=\frac{0.244}{1.36 \times 0.76^{2}}\right)
$$

M3 0.311
Correct answer scores 3; M3 to at least 2sf (0.3106159 ...); ignore units

Allow ECF from M1 to M2 if an attempt to calculate concentration has been made by dividing by some factor of $250 \mathrm{~cm}^{3}$
Allow ECF from M2 to M3 for use of an expression containing each reagent in a correctly substituted K_{c} expression
If volume not used, then allow M3 only for 4.97 (4.96985 ... to at least 2sf)
(d) M1 $\frac{1}{\text { Answer to (c) }}=3.22$

M1 to at least 2sf (0.31 gives 3.2(258))
M1 = 1.21 if alternative answer to 8.3 used
If an error was made in 8.3, but the candidate produced an answer in 8.4 that did fit the inverted
calculation from 8.3, then candidate could score M1

M2 $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
(if volumes are not used, then candidate would get 0.20(12.)
[8]

Q13.
(a) Initial amount of $\mathrm{A}=6.4 \times 10^{-3}$

If M1 wrong can score max 3

Equ $A=6.4 \times 10^{-3}-2 x \therefore x=1.25 \times 10^{-3}$
If incorrect x can score max 3
$B=9.5 \times 10^{-3}-x=8.25 \times 10^{-3}$
Allow 2 or more sig figs
$C=2.8 \times 10^{-2}+3 x=0.0318$
$D=x=1.25 \times 10^{-3}$
(b)
$K_{\mathrm{c}}=\frac{[C]^{3}[D]}{[A]^{2}[B]}$
Penalise () but mark on in (b) \& (c)

1
Units $=\mathrm{mol} \mathrm{dm}^{-3}$
If K_{c} wrong no mark for units
(c) M1 for correct rearrangement $[A]^{2}=\frac{[C]^{3}[D]}{K_{c}[B]}$ or $[A]=\sqrt{\frac{[C]^{3}[D]}{K_{c}[B]}}$ If K_{c} wrong in (b) can score 1 for dividing by correct volume

M2 for division of mol of B, C and D by correct volume If K_{c} correct but incorrect rearrangement can score 1 for dividing by correct volume

M3 for final answer: $[\mathrm{A}]=\underline{0.17}$ (must be 2 sfs)
(d) (All) conc fall: (ignore dilution)
$O R K_{c}=$ mole ratio $\times 1 / \mathrm{V}$

Equm moves to side with more moles
If vol increases, mole ratio must increase

To oppose the decrease in conc
To keep K_{c} constant
If only conc of A falls CE=0
If pressure falls $C E=0$

Q14.
C

Q15.

(a) $\mathrm{mol} \mathrm{R}=2 x$
(b) $3.6=\frac{(2 x)^{2}}{(1-x)^{2}}$

M1 can be awarded for the insertion of their answer from (a) correctly
$\sqrt{ } 3.6=\frac{2 x}{1-x} \quad$ (only positive root to be used)
$\sqrt{ } 3.6-\sqrt{ } 3.6 x=2 x$
$1.9=3.9 x$
$X=0.49$
$[\mathrm{R}]=0.97 \mathrm{~mol} \mathrm{dm}^{-3}$ (allow range $0.97-.098$)
M3 solve for x from their expression in M1 and use it to calculate [R]
M2 can be awarded if their expression is expanded

Q16.
D

Q17.
(a) This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

Level 3 (5-6 marks)

All stages are covered and the explanation of each stage is generally correct and virtually complete. To access Level 3, statement 3a must be considered.
Answer is communicated coherently and shows a logical progression from stage 1 (including 1b) to stage 2 and stage 3

Level 2 (3-4 marks)

All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.
Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3 .

Level 1 (1-2 marks)

Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete.
Answer includes isolated statements but these are presented in a logical order, with sensible reasoning.

Level 0 (0 marks)

Insufficient correct chemistry to gain a mark.

Indicative chemistry content

Stage 1 - Deductions from graph

1a Yield increases as temperature increases (or converse)
1b After a certain temperature yield no longer increases
1c Yield decreases as pressure increases (or converse)

Stage 2 - Optimum temperature and explanation

2a High temperature results in high energy costs/expensive
2 b (After a certain temperature) yield no longer increases therefore there is no gain in using a higher temperature
2c Optimum temperature is between $780-880 \mathrm{oC}$

Stage 3 - Optimum pressure and explanation

3a Low pressure may be too slow
3b So compromise pressure required
3c Optimum pressure is $1000-2000 \mathrm{kPa}$ or moderate pressure used
(b) Moles of carbon monoxide 17.9

Allow 17.94

Moles of hydrogen
Allow 19.88
$\mathrm{K}_{\mathrm{p}}=\frac{p p\left(\mathrm{CH}_{3} \mathrm{OH}\right)}{p p(\mathrm{CO}) \times p p\left(\mathrm{H}_{2}\right)^{2}}$
ignore brackets
If K_{p} expression incorrect can only score M2 \& M3 \& M4

Total moles of gas $=(2.76+4.51+0.36)=7.63$ If CE in M2 allow ecf for M3, M4 and M6 If no total moles calculated then can only score M1 and M6
$p p(\mathrm{CO})=\frac{2.76}{7.63} \times 630(\mathrm{kPa}) \quad(=228(\mathrm{kPa}))$
$p p\left(\mathrm{H}_{2}\right)=\frac{4.51}{7.63} \times 630(\mathrm{kPa}) \quad(=372(\mathrm{kPa}))$
$p p\left(\mathrm{CH}_{3} \mathrm{OH}\right)=\frac{0.36}{7.63} \times 630(\mathrm{kPa}) \quad(=29.7(\mathrm{kPa}))$
All 3 pp of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}=2$ marks
2 pp correct = 1 mark
$\mathrm{Kp}=\frac{29.7}{228 \times(372) 2}=9.4(1) \times 10^{-7}$ or $9.4(1) \times 10^{-13}$ if $p p$ in Pa can also score M1 from this expression

Allow 9.39 to $9.50 \times 10^{-7}\left(\mathrm{kPa}^{-2}\right)$

$$
\begin{aligned}
& \mathbf{k P a}^{-2} \text { or } \mathrm{Pa}^{-2} \text { (if converted to } 630000 \text {) } \\
& \quad \text { If no marks awarded allow M6 only for } \mathbf{k P a}^{-2} \text { or } \mathrm{Pa}^{-2}
\end{aligned}
$$

Q18.

(a)


```
Allow CH3}\mp@subsup{\textrm{COOCH}}{2}{}\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{OOCCH}}{3}{
OR CH3}\mp@subsup{\textrm{COOCH}}{2}{}\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{OCOCH}}{3}{
OR
```


(c)

$$
\left(K_{\mathrm{c}}=\right) \frac{[\text { ester }] \times\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]^{2} \times\left[\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]}
$$

The volume cancels out (Penalise a contradictory justification from expression if the volumes do not cancel out)
OR
there are equal no of moles on each side of the equation OR
there are equal no of molecules on each side of the equation
(d)

$$
(\mathrm{Mol} \mathrm{CH} 33 \mathrm{COOH} / V)^{2}=\frac{\left(8.02 \times 10^{-1} / V\right)(1.15 / V)^{2}}{6.45 \times\left(2.64 \times 10^{-1} / V\right)}
$$

$\mathrm{Mol} \mathrm{CH} 33 \mathrm{COOH}=\sqrt{\frac{\left(8.02 \times 10^{-1}\right) \times(1.15)^{2}}{6.45 \times\left(2.64 \times 10^{-1}\right)}}=\sqrt{0.623}$
$\mathrm{Mol} \mathrm{CH} 33 \mathrm{COOH}=0.789 \quad$ (must be 3 sfs) Allow $0.788-0.790$
0.789 scores 3

Allow without V : $\left(\mathrm{nCH}_{3} \mathrm{COOH}\right)^{2}=$ $\frac{\left(8.02 \times 10^{-1}\right)(1.15)^{2}}{6.45 \times\left(2.64 \times 10^{-1}\right)}$

If $\left(\mathrm{nCH}_{3} \mathrm{COOH}\right)^{2}=0.623$ then award M1 and M2
If K_{c} is correct in (c) but incorrect rearrangement, then $C E=0$ except if upside down rearrangement
then M3 only awarded for 1.27
If K_{c} is incorrect in (c) then only M1 can be awarded for correct rearrangement.

Q19.
(a) $\frac{[\mathrm{Y}]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{XX]}\left[\mathrm{CH} \mathrm{O}_{3} \mathrm{OH}\right]^{2}\right.}$
(b) 0.06
0.32
0.52
(c) $\frac{0.26 \times 0.52^{2}}{0.06 \times 0.32^{2}}$
$=(11.44)=\underline{11}(2 \mathrm{sf})$

No units
(d) Increase

Q20.
(a) amount of $X=0.50-0.20=0.30(\mathrm{~mol})$
amount of $Y=0.50-2 \times 0.20=0.10(\mathrm{~mol})$
(b) Axes labelled with values, units and scales that use over half of each axis

All three of values, units and scales are required for the mark

Curve starts at origin

Then flattens at 30 seconds at 0.20 mol
(c) Expression $=K_{\mathrm{c}}=\frac{[\mathrm{Z}]}{[\mathrm{X}][\mathrm{Y}]^{2}}$
$[\mathrm{Y}]^{2}=\frac{[\mathrm{Z}]}{[\mathrm{X}]} K_{\mathrm{c}}$
$[\mathrm{Y}]=(0.35 / 0.40 \times 2.9)^{0.5}=0.5493=0.55\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Answer must be to 2 significant figures
(d) Darkened / went more orange

The equilibrium moved to the right

To oppose the increased concentration of Y
(e) The orange colour would fade

